Metamath Proof Explorer


Theorem cldss

Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis iscld.1 𝑋 = 𝐽
Assertion cldss ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆𝑋 )

Proof

Step Hyp Ref Expression
1 iscld.1 𝑋 = 𝐽
2 cldrcl ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
3 1 iscld ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆𝑋 ∧ ( 𝑋𝑆 ) ∈ 𝐽 ) ) )
4 3 simprbda ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆𝑋 )
5 2 4 mpancom ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆𝑋 )