Metamath Proof Explorer
Description: A closed set is a subset of the underlying set of a topology.
(Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)
|
|
Ref |
Expression |
|
Hypothesis |
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
|
Assertion |
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cldrcl |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
3 |
1
|
iscld |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
4 |
3
|
simprbda |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ⊆ 𝑋 ) |
5 |
2 4
|
mpancom |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |