| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cldval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 3 |  | pwexg | ⊢ ( 𝑋  ∈  𝐽  →  𝒫  𝑋  ∈  V ) | 
						
							| 4 |  | rabexg | ⊢ ( 𝒫  𝑋  ∈  V  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 }  ∈  V ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽  ∈  Top  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 }  ∈  V ) | 
						
							| 6 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  𝑋 ) | 
						
							| 8 | 7 | pweqd | ⊢ ( 𝑗  =  𝐽  →  𝒫  ∪  𝑗  =  𝒫  𝑋 ) | 
						
							| 9 | 7 | difeq1d | ⊢ ( 𝑗  =  𝐽  →  ( ∪  𝑗  ∖  𝑥 )  =  ( 𝑋  ∖  𝑥 ) ) | 
						
							| 10 |  | eleq12 | ⊢ ( ( ( ∪  𝑗  ∖  𝑥 )  =  ( 𝑋  ∖  𝑥 )  ∧  𝑗  =  𝐽 )  →  ( ( ∪  𝑗  ∖  𝑥 )  ∈  𝑗  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐽 ) ) | 
						
							| 11 | 9 10 | mpancom | ⊢ ( 𝑗  =  𝐽  →  ( ( ∪  𝑗  ∖  𝑥 )  ∈  𝑗  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐽 ) ) | 
						
							| 12 | 8 11 | rabeqbidv | ⊢ ( 𝑗  =  𝐽  →  { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ( ∪  𝑗  ∖  𝑥 )  ∈  𝑗 }  =  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 } ) | 
						
							| 13 |  | df-cld | ⊢ Clsd  =  ( 𝑗  ∈  Top  ↦  { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ( ∪  𝑗  ∖  𝑥 )  ∈  𝑗 } ) | 
						
							| 14 | 12 13 | fvmptg | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 }  ∈  V )  →  ( Clsd ‘ 𝐽 )  =  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 } ) | 
						
							| 15 | 5 14 | mpdan | ⊢ ( 𝐽  ∈  Top  →  ( Clsd ‘ 𝐽 )  =  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  𝐽 } ) |