Step |
Hyp |
Ref |
Expression |
1 |
|
cldval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
3 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
4 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐽 ∈ Top → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) |
6 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
8 |
7
|
pweqd |
⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
9 |
7
|
difeq1d |
⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑗 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ) |
10 |
|
eleq12 |
⊢ ( ( ( ∪ 𝑗 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ∧ 𝑗 = 𝐽 ) → ( ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
11 |
9 10
|
mpancom |
⊢ ( 𝑗 = 𝐽 → ( ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
12 |
8 11
|
rabeqbidv |
⊢ ( 𝑗 = 𝐽 → { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
13 |
|
df-cld |
⊢ Clsd = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 } ) |
14 |
12 13
|
fvmptg |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
15 |
5 14
|
mpdan |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |