| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elisset | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 2 |  | biimt | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( 𝐴  ∈  𝐵  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) ) | 
						
							| 4 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐵  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ∈  𝐵  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 7 | 6 | pm5.74i | ⊢ ( ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 9 | 4 8 | bitr3i | ⊢ ( ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 10 | 3 9 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) ) |