Metamath Proof Explorer


Theorem clel2g

Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993) Strengthen from sethood hypothesis to sethood antecedent. (Revised by BJ, 12-Feb-2022) Avoid ax-12 . (Revised by BJ, 1-Sep-2024)

Ref Expression
Assertion clel2g ( 𝐴𝑉 → ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
2 biimt ( ∃ 𝑥 𝑥 = 𝐴 → ( 𝐴𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) ) )
3 1 2 syl ( 𝐴𝑉 → ( 𝐴𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) ) )
4 19.23v ( ∀ 𝑥 ( 𝑥 = 𝐴𝐴𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
6 5 bicomd ( 𝑥 = 𝐴 → ( 𝐴𝐵𝑥𝐵 ) )
7 6 pm5.74i ( ( 𝑥 = 𝐴𝐴𝐵 ) ↔ ( 𝑥 = 𝐴𝑥𝐵 ) )
8 7 albii ( ∀ 𝑥 ( 𝑥 = 𝐴𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
9 4 8 bitr3i ( ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
10 3 9 bitrdi ( 𝐴𝑉 → ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) ) )