Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clel3.1 | ⊢ 𝐵 ∈ V | |
Assertion | clel3 | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel3.1 | ⊢ 𝐵 ∈ V | |
2 | clel3g | ⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) |