Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clel3g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 2 | 1 | ceqsexgv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) |
| 3 | 2 | bicomd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ) |