Metamath Proof Explorer


Theorem clel4g

Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 . (Revised by BJ, 1-Sep-2024)

Ref Expression
Assertion clel4g ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elisset ( 𝐵𝑉 → ∃ 𝑥 𝑥 = 𝐵 )
2 biimt ( ∃ 𝑥 𝑥 = 𝐵 → ( 𝐴𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵𝐴𝐵 ) ) )
3 1 2 syl ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵𝐴𝐵 ) ) )
4 19.23v ( ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐵𝐴𝐵 ) )
5 3 4 bitr4di ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ) )
6 eleq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
7 6 bicomd ( 𝑥 = 𝐵 → ( 𝐴𝐵𝐴𝑥 ) )
8 7 pm5.74i ( ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ( 𝑥 = 𝐵𝐴𝑥 ) )
9 8 albii ( ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) )
10 5 9 bitrdi ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) ) )