| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elisset | ⊢ ( 𝐵  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐵 ) | 
						
							| 2 |  | biimt | ⊢ ( ∃ 𝑥 𝑥  =  𝐵  →  ( 𝐴  ∈  𝐵  ↔  ( ∃ 𝑥 𝑥  =  𝐵  →  𝐴  ∈  𝐵 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ( ∃ 𝑥 𝑥  =  𝐵  →  𝐴  ∈  𝐵 ) ) ) | 
						
							| 4 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐵  →  𝐴  ∈  𝐵 )  ↔  ( ∃ 𝑥 𝑥  =  𝐵  →  𝐴  ∈  𝐵 ) ) | 
						
							| 5 | 3 4 | bitr4di | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  =  𝐵  →  𝐴  ∈  𝐵 ) ) ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 7 | 6 | bicomd | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  𝑥 ) ) | 
						
							| 8 | 7 | pm5.74i | ⊢ ( ( 𝑥  =  𝐵  →  𝐴  ∈  𝐵 )  ↔  ( 𝑥  =  𝐵  →  𝐴  ∈  𝑥 ) ) | 
						
							| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐵  →  𝐴  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐵  →  𝐴  ∈  𝑥 ) ) | 
						
							| 10 | 5 9 | bitrdi | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  =  𝐵  →  𝐴  ∈  𝑥 ) ) ) |