Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑦 𝑦 = 𝐴 ) |
2 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
4 |
3
|
cbvexvw |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑦 𝑦 = 𝐴 ) |
5 |
2 4
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃ 𝑦 𝑦 = 𝐴 ) |
6 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
|
sb5 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
8 |
6 7
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
9 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) |
10 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
11 |
10
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
12 |
11
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
13 |
9 12
|
bibi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) ) |
14 |
8 13
|
mpbii |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
15 |
14
|
exlimiv |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
16 |
1 5 15
|
pm5.21nii |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |