Step |
Hyp |
Ref |
Expression |
1 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
4 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
7 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
9 |
7 8
|
bitr4di |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
10 |
6 9
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) ) |
11 |
2 5 10
|
cbvexv1 |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
12 |
1 11
|
bitr4i |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |