Metamath Proof Explorer


Theorem clelsb1fw

Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). Version of clelsb1f with a disjoint variable condition, which does not require ax-13 . (Contributed by Rodolfo Medina, 28-Apr-2010) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis clelsb1fw.1 𝑥 𝐴
Assertion clelsb1fw ( [ 𝑦 / 𝑥 ] 𝑥𝐴𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 clelsb1fw.1 𝑥 𝐴
2 1 nfcri 𝑥 𝑤𝐴
3 2 sbco2v ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝑤𝐴 ↔ [ 𝑦 / 𝑤 ] 𝑤𝐴 )
4 clelsb1 ( [ 𝑥 / 𝑤 ] 𝑤𝐴𝑥𝐴 )
5 4 sbbii ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝑤𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑥𝐴 )
6 clelsb1 ( [ 𝑦 / 𝑤 ] 𝑤𝐴𝑦𝐴 )
7 3 5 6 3bitr3i ( [ 𝑦 / 𝑥 ] 𝑥𝐴𝑦𝐴 )