Metamath Proof Explorer


Theorem clelsb2

Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 ). (Contributed by Jim Kingdon, 22-Nov-2018)

Ref Expression
Assertion clelsb2 ( [ 𝑦 / 𝑥 ] 𝐴𝑥𝐴𝑦 )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 𝐴𝑤
2 1 sbco2 ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝐴𝑤 ↔ [ 𝑦 / 𝑤 ] 𝐴𝑤 )
3 nfv 𝑤 𝐴𝑥
4 eleq2 ( 𝑤 = 𝑥 → ( 𝐴𝑤𝐴𝑥 ) )
5 3 4 sbie ( [ 𝑥 / 𝑤 ] 𝐴𝑤𝐴𝑥 )
6 5 sbbii ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝐴𝑤 ↔ [ 𝑦 / 𝑥 ] 𝐴𝑥 )
7 nfv 𝑤 𝐴𝑦
8 eleq2 ( 𝑤 = 𝑦 → ( 𝐴𝑤𝐴𝑦 ) )
9 7 8 sbie ( [ 𝑦 / 𝑤 ] 𝐴𝑤𝐴𝑦 )
10 2 6 9 3bitr3i ( [ 𝑦 / 𝑥 ] 𝐴𝑥𝐴𝑦 )