Metamath Proof Explorer


Theorem clifte

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses clifte.1 ( 𝜑 ∧ ¬ 𝜒 )
clifte.2 𝜃
Assertion clifte ( 𝜃 ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 clifte.1 ( 𝜑 ∧ ¬ 𝜒 )
2 clifte.2 𝜃
3 1 orci ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) )
4 2 3 2th ( 𝜃 ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) ) )