Metamath Proof Explorer


Theorem clifteta

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses clifteta.1 ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) )
clifteta.2 𝜃
Assertion clifteta ( 𝜃 ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 clifteta.1 ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) )
2 clifteta.2 𝜃
3 2 1 2th ( 𝜃 ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( 𝜓𝜒 ) ) )