| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 2 |  | clim.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 3 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 4 | 3 | brrelex2i | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  V ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  →  𝐴  ∈  V ) ) | 
						
							| 6 |  | elex | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  V ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  →  𝐴  ∈  V ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  →  𝐴  ∈  V ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( 𝑦  ∈  ℂ  ↔  𝐴  ∈  ℂ ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 14 |  | oveq12 | ⊢ ( ( ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 )  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  −  𝑦 )  =  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 15 | 11 14 | sylan | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  −  𝑦 )  =  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 18 | 13 17 | anbi12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 22 | 10 21 | anbi12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑦  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 23 |  | df-clim | ⊢  ⇝   =  { 〈 𝑓 ,  𝑦 〉  ∣  ( 𝑦  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 ) ) } | 
						
							| 24 | 22 23 | brabga | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐴  ∈  V )  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝐹  ∈  𝑉  →  ( 𝐴  ∈  V  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) ) | 
						
							| 27 | 5 8 26 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 28 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝑘  ∈  ℤ ) | 
						
							| 29 | 2 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  𝐵  ∈  ℂ ) ) | 
						
							| 30 | 2 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  =  ( abs ‘ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 32 | 29 31 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 33 | 28 32 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 34 | 33 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 35 | 34 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 38 | 27 37 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) ) |