| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim0cf.nf | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 2 |  | clim0cf.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | clim0cf.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | clim0cf.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 5 |  | clim0cf.fv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 6 |  | clim0cf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 8 | 1 2 3 4 5 7 6 | clim2cf | ⊢ ( 𝜑  →  ( 𝐹  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 ) ) | 
						
							| 9 | 2 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 10 | 6 | subid1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐵  −  0 )  =  𝐵 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( 𝐵  −  0 ) )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 13 | 9 12 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 14 | 13 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 15 | 14 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 16 | 15 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 18 | 8 17 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝑥 ) ) |