| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim1fr1.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) ) |
| 2 |
|
clim1fr1.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 3 |
|
clim1fr1.3 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 4 |
|
clim1fr1.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 7 |
|
nnex |
⊢ ℕ ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ 1 ) ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) ∈ V ) |
| 10 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 11 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ 1 ) = ( 𝑛 ∈ ℕ ↦ 1 ) ) |
| 12 |
|
eqidd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 1 = 1 ) |
| 13 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
| 14 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) |
| 15 |
11 12 13 14
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) = 1 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) = 1 ) |
| 17 |
5 6 9 10 16
|
climconst |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) ⇝ 1 ) |
| 18 |
7
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) ) ∈ V |
| 19 |
1 18
|
eqeltri |
⊢ 𝐹 ∈ V |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 23 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 26 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 28 |
21 22 24 25 27
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) / 𝑛 ) = ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) |
| 29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ) |
| 30 |
4 2 3
|
divcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 31 |
|
divcnv |
⊢ ( ( 𝐵 / 𝐴 ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) ⇝ 0 ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) ⇝ 0 ) |
| 33 |
29 32
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ⇝ 0 ) |
| 34 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 1 ) = ( 𝑛 ∈ ℕ ↦ 1 ) |
| 35 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
| 36 |
34 35
|
fmpti |
⊢ ( 𝑛 ∈ ℕ ↦ 1 ) : ℕ ⟶ ℂ |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) : ℕ ⟶ ℂ ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 39 |
22 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 · 𝑛 ) ∈ ℂ ) |
| 40 |
22 24 25 27
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 · 𝑛 ) ≠ 0 ) |
| 41 |
21 39 40
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑛 ) ) ∈ ℂ ) |
| 42 |
41
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) : ℕ ⟶ ℂ ) |
| 43 |
42
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 44 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 · 𝑛 ) = ( 𝐴 · 𝑘 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 · 𝑛 ) + 𝐵 ) = ( ( 𝐴 · 𝑘 ) + 𝐵 ) ) |
| 46 |
45 44
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) = ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 49 |
47
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 50 |
48 49
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
| 51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 52 |
50 51
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 · 𝑘 ) + 𝐵 ) ∈ ℂ ) |
| 53 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 54 |
47
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 55 |
48 49 53 54
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ≠ 0 ) |
| 56 |
52 50 55
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 57 |
1 46 47 56
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ) |
| 58 |
50 51 50 55
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) = ( ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 59 |
50 55
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) = 1 ) |
| 60 |
59
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) = ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 61 |
58 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) = ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 62 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 = ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) ) |
| 63 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) |
| 65 |
64
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → ( 𝐴 · 𝑛 ) = ( 𝐴 · 𝑘 ) ) |
| 66 |
65
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → ( 𝐵 / ( 𝐴 · 𝑛 ) ) = ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) |
| 67 |
51 50 55
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 68 |
63 66 47 67
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) = ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) |
| 69 |
68
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 70 |
62 69
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) = ( ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) + ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 71 |
57 61 70
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) + ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 72 |
5 6 17 20 33 38 43 71
|
climadd |
⊢ ( 𝜑 → 𝐹 ⇝ ( 1 + 0 ) ) |
| 73 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 74 |
72 73
|
breqtrdi |
⊢ ( 𝜑 → 𝐹 ⇝ 1 ) |