Metamath Proof Explorer


Theorem clim2c

Description: Express the predicate F converges to A . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim2.1 𝑍 = ( ℤ𝑀 )
clim2.2 ( 𝜑𝑀 ∈ ℤ )
clim2.3 ( 𝜑𝐹𝑉 )
clim2.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
clim2c.5 ( 𝜑𝐴 ∈ ℂ )
clim2c.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion clim2c ( 𝜑 → ( 𝐹𝐴 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 clim2.1 𝑍 = ( ℤ𝑀 )
2 clim2.2 ( 𝜑𝑀 ∈ ℤ )
3 clim2.3 ( 𝜑𝐹𝑉 )
4 clim2.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 clim2c.5 ( 𝜑𝐴 ∈ ℂ )
6 clim2c.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
7 5 biantrurd ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
8 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
9 6 biantrurd ( ( 𝜑𝑘𝑍 ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
10 8 9 sylan2 ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
11 10 anassrs ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
12 11 ralbidva ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
13 12 rexbidva ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
14 13 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
15 1 2 3 4 clim2 ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
16 7 14 15 3bitr4rd ( 𝜑 → ( 𝐹𝐴 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )