Metamath Proof Explorer


Theorem clim2cf

Description: Express the predicate F converges to A . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim2cf.nf 𝑘 𝐹
clim2cf.z 𝑍 = ( ℤ𝑀 )
clim2cf.m ( 𝜑𝑀 ∈ ℤ )
clim2cf.f ( 𝜑𝐹𝑉 )
clim2cf.fv ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
clim2cf.a ( 𝜑𝐴 ∈ ℂ )
clim2cf.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion clim2cf ( 𝜑 → ( 𝐹𝐴 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 clim2cf.nf 𝑘 𝐹
2 clim2cf.z 𝑍 = ( ℤ𝑀 )
3 clim2cf.m ( 𝜑𝑀 ∈ ℤ )
4 clim2cf.f ( 𝜑𝐹𝑉 )
5 clim2cf.fv ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
6 clim2cf.a ( 𝜑𝐴 ∈ ℂ )
7 clim2cf.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
8 6 biantrurd ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
9 2 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
10 7 biantrurd ( ( 𝜑𝑘𝑍 ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
11 9 10 sylan2 ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
12 11 anassrs ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
13 12 ralbidva ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
14 13 rexbidva ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
15 14 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
16 1 2 3 4 5 clim2f ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
17 8 15 16 3bitr4rd ( 𝜑 → ( 𝐹𝐴 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )