Step |
Hyp |
Ref |
Expression |
1 |
|
clim2div.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
clim2div.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
clim2div.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
4 |
|
clim2div.4 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐴 ) |
5 |
|
clim2div.5 |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |
6 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
7 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
8 |
7 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
10 |
9
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
14 |
1 13 3
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
15 |
14 2
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
16 |
15 5
|
reccld |
⊢ ( 𝜑 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℂ ) |
17 |
|
seqex |
⊢ seq ( 𝑁 + 1 ) ( · , 𝐹 ) ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ∈ V ) |
19 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
20 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
22 |
21 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
23 |
1
|
uztrn2 |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
24 |
22 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
25 |
14
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
26 |
24 25
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
27 |
|
mulcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
29 |
|
mulass |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑘 · 𝑥 ) · 𝑦 ) = ( 𝑘 · ( 𝑥 · 𝑦 ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑘 · 𝑥 ) · 𝑦 ) = ( 𝑘 · ( 𝑥 · 𝑦 ) ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
32 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
33 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
35 |
34 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
37 |
28 30 31 32 36
|
seqsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
38 |
37
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) |
39 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
40 |
1
|
uztrn2 |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
41 |
22 40
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
42 |
41 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
43 |
6 10 42
|
prodf |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |
46 |
26 39 44 45
|
divmuld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ↔ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
47 |
38 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) |
48 |
26 39 45
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
49 |
47 48
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
50 |
6 10 4 16 18 26 49
|
climmulc2 |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · 𝐴 ) ) |
51 |
|
climcl |
⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
52 |
4 51
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
53 |
52 15 5
|
divrec2d |
⊢ ( 𝜑 → ( 𝐴 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · 𝐴 ) ) |
54 |
50 53
|
breqtrrd |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ ( 𝐴 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |