Metamath Proof Explorer


Theorem clim2prod

Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses clim2prod.1 𝑍 = ( ℤ𝑀 )
clim2prod.2 ( 𝜑𝑁𝑍 )
clim2prod.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
clim2prod.4 ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ 𝐴 )
Assertion clim2prod ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 clim2prod.1 𝑍 = ( ℤ𝑀 )
2 clim2prod.2 ( 𝜑𝑁𝑍 )
3 clim2prod.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
4 clim2prod.4 ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ 𝐴 )
5 eqid ( ℤ ‘ ( 𝑁 + 1 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) )
6 uzssz ( ℤ𝑀 ) ⊆ ℤ
7 1 6 eqsstri 𝑍 ⊆ ℤ
8 7 2 sselid ( 𝜑𝑁 ∈ ℤ )
9 8 peano2zd ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ )
10 2 1 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
11 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
12 10 11 syl ( 𝜑𝑀 ∈ ℤ )
13 1 12 3 prodf ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ )
14 13 2 ffvelrnd ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ )
15 seqex seq 𝑀 ( · , 𝐹 ) ∈ V
16 15 a1i ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ V )
17 peano2uz ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
18 uzss ( ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) → ( ℤ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ𝑀 ) )
19 10 17 18 3syl ( 𝜑 → ( ℤ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ𝑀 ) )
20 19 1 sseqtrrdi ( 𝜑 → ( ℤ ‘ ( 𝑁 + 1 ) ) ⊆ 𝑍 )
21 20 sselda ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑘𝑍 )
22 21 3 syldan ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
23 5 9 22 prodf ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) : ( ℤ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ )
24 23 ffvelrnda ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℂ )
25 fveq2 ( 𝑥 = ( 𝑁 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) )
26 fveq2 ( 𝑥 = ( 𝑁 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) )
27 26 oveq2d ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) )
28 25 27 eqeq12d ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) )
29 28 imbi2d ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) )
30 fveq2 ( 𝑥 = 𝑛 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) )
31 fveq2 ( 𝑥 = 𝑛 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) )
32 31 oveq2d ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) )
33 30 32 eqeq12d ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) )
34 33 imbi2d ( 𝑥 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) )
35 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
36 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
37 36 oveq2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) )
38 35 37 eqeq12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) )
39 38 imbi2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) )
40 fveq2 ( 𝑥 = 𝑘 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) )
41 fveq2 ( 𝑥 = 𝑘 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) )
42 41 oveq2d ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) )
43 40 42 eqeq12d ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) )
44 43 imbi2d ( 𝑥 = 𝑘 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) )
45 10 adantr ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → 𝑁 ∈ ( ℤ𝑀 ) )
46 seqp1 ( 𝑁 ∈ ( ℤ𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) )
47 45 46 syl ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) )
48 seq1 ( ( 𝑁 + 1 ) ∈ ℤ → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) )
49 48 adantl ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) )
50 49 oveq2d ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) )
51 47 50 eqtr4d ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) )
52 51 expcom ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) )
53 19 sselda ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
54 seqp1 ( 𝑛 ∈ ( ℤ𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
55 53 54 syl ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
56 55 adantr ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
57 oveq1 ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
58 57 adantl ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
59 14 adantr ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ )
60 23 ffvelrnda ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ )
61 peano2uz ( 𝑛 ∈ ( ℤ𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ𝑀 ) )
62 61 1 eleqtrrdi ( 𝑛 ∈ ( ℤ𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 )
63 53 62 syl ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ 𝑍 )
64 3 ralrimiva ( 𝜑 → ∀ 𝑘𝑍 ( 𝐹𝑘 ) ∈ ℂ )
65 fveq2 ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
66 65 eleq1d ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) )
67 66 rspcv ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘𝑍 ( 𝐹𝑘 ) ∈ ℂ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) )
68 64 67 mpan9 ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ )
69 63 68 syldan ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ )
70 59 60 69 mulassd ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
71 70 adantr ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
72 seqp1 ( 𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
73 72 adantl ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
74 73 oveq2d ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
75 74 adantr ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
76 71 75 eqtr4d ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) )
77 56 58 76 3eqtrd ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) )
78 77 exp31 ( 𝜑 → ( 𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) )
79 78 com12 ( 𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) )
80 79 a2d ( 𝑛 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) )
81 29 34 39 44 52 80 uzind4 ( 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) )
82 81 impcom ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) )
83 5 9 4 14 16 24 82 climmulc2 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · 𝐴 ) )