Step |
Hyp |
Ref |
Expression |
1 |
|
clim2prod.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
clim2prod.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
clim2prod.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
4 |
|
clim2prod.4 |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ 𝐴 ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
6 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
7 |
1 6
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
8 |
7 2
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
8
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
10 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
1 12 3
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
14 |
13 2
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
15 |
|
seqex |
⊢ seq 𝑀 ( · , 𝐹 ) ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ V ) |
17 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
18 |
|
uzss |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
19 |
10 17 18
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
20 |
19 1
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ 𝑍 ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
22 |
21 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
23 |
5 9 22
|
prodf |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
24 |
23
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
28 |
25 27
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
33 |
30 32
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
34 |
33
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
39 |
38
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
43 |
40 42
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) |
44 |
43
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) ) |
45 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
46 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
48 |
|
seq1 |
⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
51 |
47 50
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
52 |
51
|
expcom |
⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
53 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
54 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
57 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
59 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
60 |
23
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
61 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
62 |
61 1
|
eleqtrrdi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
63 |
53 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
64 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
65 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
66 |
65
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
67 |
66
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
68 |
64 67
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
69 |
63 68
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
70 |
59 60 69
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
72 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
74 |
73
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
76 |
71 75
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
77 |
56 58 76
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
78 |
77
|
exp31 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
79 |
78
|
com12 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
80 |
79
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
81 |
29 34 39 44 52 80
|
uzind4 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) |
82 |
81
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
83 |
5 9 4 14 16 24 82
|
climmulc2 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · 𝐴 ) ) |