Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
clim2ser.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
clim2ser.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
4 |
|
clim2ser.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
6 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
eluzelz |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
1 12 3
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
14 |
13 2
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
15 |
|
seqex |
⊢ seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V ) |
17 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
18 |
8 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
19 |
1
|
uztrn2 |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
20 |
18 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
21 |
17 20
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
22 |
|
addcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) |
24 |
|
addass |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
28 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
28 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
30 |
29 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
32 |
23 25 26 27 31
|
seqsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
34 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
35 |
1
|
uztrn2 |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
36 |
18 35
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
37 |
36 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
38 |
5 10 37
|
serf |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
39 |
38
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
40 |
34 39
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) |
41 |
33 40
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
42 |
5 10 4 14 16 21 41
|
climsubc1 |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ⇝ ( 𝐴 − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |