Metamath Proof Explorer


Theorem clim2ser

Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 𝑍 = ( ℤ𝑀 )
clim2ser.2 ( 𝜑𝑁𝑍 )
clim2ser.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
clim2ser.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
Assertion clim2ser ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ⇝ ( 𝐴 − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 clim2ser.1 𝑍 = ( ℤ𝑀 )
2 clim2ser.2 ( 𝜑𝑁𝑍 )
3 clim2ser.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
4 clim2ser.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
5 eqid ( ℤ ‘ ( 𝑁 + 1 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) )
6 2 1 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
7 peano2uz ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
8 6 7 syl ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) )
9 eluzelz ( ( 𝑁 + 1 ) ∈ ( ℤ𝑀 ) → ( 𝑁 + 1 ) ∈ ℤ )
10 8 9 syl ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ )
11 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
12 6 11 syl ( 𝜑𝑀 ∈ ℤ )
13 1 12 3 serf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ )
14 13 2 ffvelrnd ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ )
15 seqex seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V
16 15 a1i ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V )
17 13 adantr ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ )
18 8 1 eleqtrrdi ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 )
19 1 uztrn2 ( ( ( 𝑁 + 1 ) ∈ 𝑍𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑗𝑍 )
20 18 19 sylan ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑗𝑍 )
21 17 20 ffvelrnd ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ )
22 addcl ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 + 𝑥 ) ∈ ℂ )
23 22 adantl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 + 𝑥 ) ∈ ℂ )
24 addass ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) )
25 24 adantl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) )
26 simpr ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) )
27 6 adantr ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( ℤ𝑀 ) )
28 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ𝑀 ) )
29 28 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘𝑍 )
30 29 3 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
31 30 adantlr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
32 23 25 26 27 31 seqsplit ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) )
33 32 oveq1d ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )
34 14 adantr ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ )
35 1 uztrn2 ( ( ( 𝑁 + 1 ) ∈ 𝑍𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑘𝑍 )
36 18 35 sylan ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → 𝑘𝑍 )
37 36 3 syldan ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
38 5 10 37 serf ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) : ( ℤ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ )
39 38 ffvelrnda ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ )
40 34 39 pncan2d ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) )
41 33 40 eqtr2d ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )
42 5 10 4 14 16 21 41 climsubc1 ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ⇝ ( 𝐴 − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )