Step |
Hyp |
Ref |
Expression |
1 |
|
climcn1lem.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climcn1lem.2 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
3 |
|
climcn1lem.4 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
4 |
|
climcn1lem.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climcn1lem.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
6 |
|
climabs.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
7 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
9 |
|
fss |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → abs : ℂ ⟶ ℂ ) |
10 |
7 8 9
|
mp2an |
⊢ abs : ℂ ⟶ ℂ |
11 |
|
abscn2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( abs ‘ 𝑧 ) − ( abs ‘ 𝐴 ) ) ) < 𝑥 ) ) |
12 |
1 2 3 4 5 10 11 6
|
climcn1lem |
⊢ ( 𝜑 → 𝐺 ⇝ ( abs ‘ 𝐴 ) ) |