Step |
Hyp |
Ref |
Expression |
1 |
|
climadd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climadd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climadd.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
4 |
|
climaddc1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
climaddc1.6 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
6 |
|
climaddc1.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
7 |
|
climaddc1.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + 𝐶 ) ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
uzssz |
⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ |
10 |
|
zex |
⊢ ℤ ∈ V |
11 |
9 10
|
climconst2 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 𝐶 } ) ⇝ 𝐶 ) |
12 |
4 8 11
|
sylancl |
⊢ ( 𝜑 → ( ℤ × { 𝐶 } ) ⇝ 𝐶 ) |
13 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
14 |
13 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
15 |
|
fvconst2g |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) = 𝐶 ) |
16 |
4 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) = 𝐶 ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
18 |
16 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) ∈ ℂ ) |
19 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) + ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) + 𝐶 ) ) |
20 |
7 19
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) ) ) |
21 |
1 2 3 5 12 6 18 20
|
climadd |
⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐴 + 𝐶 ) ) |