| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climadd.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | climadd.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | climadd.4 | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 4 |  | climaddc1.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | climaddc1.6 | ⊢ ( 𝜑  →  𝐺  ∈  𝑊 ) | 
						
							| 6 |  | climaddc1.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 7 |  | climaddc2.h | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐶  +  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐶  ∈  ℂ ) | 
						
							| 9 | 8 6 7 | comraddd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +  𝐶 ) ) | 
						
							| 10 | 1 2 3 4 5 6 9 | climaddc1 | ⊢ ( 𝜑  →  𝐺  ⇝  ( 𝐴  +  𝐶 ) ) | 
						
							| 11 |  | climcl | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 12 4 | addcomd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐶 )  =  ( 𝐶  +  𝐴 ) ) | 
						
							| 14 | 10 13 | breqtrd | ⊢ ( 𝜑  →  𝐺  ⇝  ( 𝐶  +  𝐴 ) ) |