Step |
Hyp |
Ref |
Expression |
1 |
|
climcau.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
3 |
1
|
climcau |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) |
5 |
1
|
caubnd |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
7 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
8 |
|
simpr |
⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
9 |
8
|
abscld |
⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
10 |
|
simpllr |
⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝑥 ∈ ℝ ) |
11 |
|
ltle |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
13 |
12
|
expimpd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
14 |
13
|
ralimdva |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
15 |
7 14
|
syl5bir |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
16 |
15
|
exp4b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) ) |
17 |
16
|
com23 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) |
19 |
18
|
reximdvai |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
20 |
6 19
|
mpd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |