Step |
Hyp |
Ref |
Expression |
1 |
|
climbddf.1 |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
climbddf.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝑀 ∈ ℤ ) |
4 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝐹 ∈ dom ⇝ ) |
5 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑘 ) ∈ ℂ |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
7 |
1 6
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
9 |
7 8
|
nfel |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) ∈ ℂ |
10 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
12 |
5 9 11
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
13 |
12
|
biimpi |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
15 |
2
|
climbdd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 ) |
16 |
3 4 14 15
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
18 |
17 7
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
20 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
21 |
18 19 20
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 |
22 |
|
nfv |
⊢ Ⅎ 𝑗 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 |
23 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑘 → ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑗 = 𝑘 → ( ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
25 |
21 22 24
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
26 |
25
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
27 |
16 26
|
sylib |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |