Step |
Hyp |
Ref |
Expression |
1 |
|
climcau.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
df-br |
⊢ ( 𝐹 ⇝ 𝑦 ↔ 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) |
3 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
4 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
6 |
|
eqidd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
7 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ⇝ 𝑦 ) |
8 |
1 3 5 6 7
|
climi |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) |
9 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
10 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
16 |
14
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
19 |
18
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
20 |
13 19
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
21 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
23 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ⇝ 𝑦 ) |
24 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝑦 → 𝑦 ∈ ℂ ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑦 ∈ ℂ ) |
26 |
|
simprl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
27 |
|
simplrl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → 𝑦 ∈ ℂ ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → 𝑥 ∈ ℝ ) |
30 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) |
31 |
28 27
|
abssubd |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( 𝑦 − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) ) |
32 |
|
simplrr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) |
33 |
31 32
|
eqbrtrd |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( 𝑦 − ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ) |
34 |
26 27 28 29 30 33
|
abs3lemd |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
35 |
34
|
ex |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
36 |
35
|
ralimdv |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
37 |
36
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
38 |
37
|
com23 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
39 |
22 25 38
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
40 |
20 39
|
mpdd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
41 |
40
|
reximdva |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
42 |
8 41
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
43 |
42
|
ralrimiva |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
44 |
43
|
ex |
⊢ ( 𝑀 ∈ ℤ → ( 𝐹 ⇝ 𝑦 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
45 |
2 44
|
syl5bir |
⊢ ( 𝑀 ∈ ℤ → ( 〈 𝐹 , 𝑦 〉 ∈ ⇝ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
46 |
45
|
exlimdv |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
47 |
|
eldm2g |
⊢ ( 𝐹 ∈ dom ⇝ → ( 𝐹 ∈ dom ⇝ ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) ) |
48 |
47
|
ibi |
⊢ ( 𝐹 ∈ dom ⇝ → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) |
49 |
46 48
|
impel |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |