Metamath Proof Explorer


Theorem climcl

Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion climcl ( 𝐹𝐴𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 climrel Rel ⇝
2 1 brrelex1i ( 𝐹𝐴𝐹 ∈ V )
3 eqidd ( ( 𝐹𝐴𝑘 ∈ ℤ ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
4 2 3 clim ( 𝐹𝐴 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) )
5 4 ibi ( 𝐹𝐴 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
6 5 simpld ( 𝐹𝐴𝐴 ∈ ℂ )