| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climcn1.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climcn1.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climcn1.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 4 |
|
climcn1.4 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 5 |
|
climcn1.5 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
| 6 |
|
climcn1.6 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
| 7 |
|
climcn1.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 8 |
|
climcn1.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ) |
| 9 |
|
climcn1.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
| 12 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐺 ⇝ 𝐴 ) |
| 14 |
1 10 11 12 13
|
climi2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 15 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 16 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 18 |
17
|
breq1d |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 19 |
18
|
imbrov2fvoveq |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 20 |
19
|
rspcva |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 21 |
16 20
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 22 |
21
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 23 |
15 22
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 24 |
23
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 25 |
24
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 26 |
25
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 28 |
14 27
|
mpid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 29 |
28
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 31 |
7 30
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) |
| 33 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) ) |
| 35 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 36 |
34 35 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 37 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) ) |
| 39 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 40 |
38 39 8
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 41 |
1 2 6 9 36 40
|
clim2c |
⊢ ( 𝜑 → ( 𝐻 ⇝ ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 42 |
32 41
|
mpbird |
⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐹 ‘ 𝐴 ) ) |