Metamath Proof Explorer


Theorem climcn1lem

Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1 𝑍 = ( ℤ𝑀 )
climcn1lem.2 ( 𝜑𝐹𝐴 )
climcn1lem.4 ( 𝜑𝐺𝑊 )
climcn1lem.5 ( 𝜑𝑀 ∈ ℤ )
climcn1lem.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
climcn1lem.7 𝐻 : ℂ ⟶ ℂ
climcn1lem.8 ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻𝑧 ) − ( 𝐻𝐴 ) ) ) < 𝑥 ) )
climcn1lem.9 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( 𝐻 ‘ ( 𝐹𝑘 ) ) )
Assertion climcn1lem ( 𝜑𝐺 ⇝ ( 𝐻𝐴 ) )

Proof

Step Hyp Ref Expression
1 climcn1lem.1 𝑍 = ( ℤ𝑀 )
2 climcn1lem.2 ( 𝜑𝐹𝐴 )
3 climcn1lem.4 ( 𝜑𝐺𝑊 )
4 climcn1lem.5 ( 𝜑𝑀 ∈ ℤ )
5 climcn1lem.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
6 climcn1lem.7 𝐻 : ℂ ⟶ ℂ
7 climcn1lem.8 ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻𝑧 ) − ( 𝐻𝐴 ) ) ) < 𝑥 ) )
8 climcn1lem.9 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( 𝐻 ‘ ( 𝐹𝑘 ) ) )
9 climcl ( 𝐹𝐴𝐴 ∈ ℂ )
10 2 9 syl ( 𝜑𝐴 ∈ ℂ )
11 6 ffvelrni ( 𝑧 ∈ ℂ → ( 𝐻𝑧 ) ∈ ℂ )
12 11 adantl ( ( 𝜑𝑧 ∈ ℂ ) → ( 𝐻𝑧 ) ∈ ℂ )
13 10 7 sylan ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻𝑧 ) − ( 𝐻𝐴 ) ) ) < 𝑥 ) )
14 1 4 10 12 2 3 13 5 8 climcn1 ( 𝜑𝐺 ⇝ ( 𝐻𝐴 ) )