Step |
Hyp |
Ref |
Expression |
1 |
|
climcn1lem.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climcn1lem.2 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
3 |
|
climcn1lem.4 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
4 |
|
climcn1lem.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climcn1lem.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
6 |
|
climcn1lem.7 |
⊢ 𝐻 : ℂ ⟶ ℂ |
7 |
|
climcn1lem.8 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻 ‘ 𝑧 ) − ( 𝐻 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
8 |
|
climcn1lem.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
9 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
6
|
ffvelrni |
⊢ ( 𝑧 ∈ ℂ → ( 𝐻 ‘ 𝑧 ) ∈ ℂ ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐻 ‘ 𝑧 ) ∈ ℂ ) |
13 |
10 7
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐻 ‘ 𝑧 ) − ( 𝐻 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
14 |
1 4 10 12 2 3 13 5 8
|
climcn1 |
⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐻 ‘ 𝐴 ) ) |