Step |
Hyp |
Ref |
Expression |
1 |
|
climcn2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climcn2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climcn2.3a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
4 |
|
climcn2.3b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
5 |
|
climcn2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) |
6 |
|
climcn2.5a |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
7 |
|
climcn2.5b |
⊢ ( 𝜑 → 𝐻 ⇝ 𝐵 ) |
8 |
|
climcn2.6 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑊 ) |
9 |
|
climcn2.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
10 |
|
climcn2.8a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ) |
11 |
|
climcn2.8b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) |
12 |
|
climcn2.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑀 ∈ ℤ ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑦 ∈ ℝ+ ) |
15 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐺 ⇝ 𝐴 ) |
17 |
1 13 14 15 16
|
climi2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) |
19 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐻 ⇝ 𝐵 ) |
21 |
1 13 18 19 20
|
climi2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) |
22 |
1
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
23 |
17 21 22
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
24 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
25 |
|
fvoveq1 |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( 𝑢 − 𝐴 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ) |
26 |
25
|
breq1d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
27 |
26
|
anbi1d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( 𝑢 𝐹 𝑣 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ) |
29 |
28
|
fvoveq1d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) = ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) ) |
30 |
29
|
breq1d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
31 |
27 30
|
imbi12d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ↔ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
32 |
|
fvoveq1 |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( abs ‘ ( 𝑣 − 𝐵 ) ) = ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ↔ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
34 |
33
|
anbi2d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ) |
36 |
35
|
fvoveq1d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) = ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) ) |
37 |
36
|
breq1d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
38 |
34 37
|
imbi12d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ↔ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
39 |
31 38
|
rspc2v |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
40 |
10 11 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
41 |
40
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
42 |
41
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
43 |
24 42
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
45 |
44
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
46 |
45
|
reximdva |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
49 |
23 48
|
mpid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
50 |
49
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
52 |
9 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) |
53 |
52
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) |
54 |
5 3 4
|
caovcld |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ ℂ ) |
55 |
10 11
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) ) |
56 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) |
58 |
28
|
eleq1d |
⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑢 𝐹 𝑣 ) ∈ ℂ ↔ ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ∈ ℂ ) ) |
59 |
35
|
eleq1d |
⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ∈ ℂ ↔ ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) ) |
60 |
58 59
|
rspc2v |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ → ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) ) |
61 |
55 57 60
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) |
62 |
1 2 8 12 54 61
|
clim2c |
⊢ ( 𝜑 → ( 𝐾 ⇝ ( 𝐴 𝐹 𝐵 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
63 |
53 62
|
mpbird |
⊢ ( 𝜑 → 𝐾 ⇝ ( 𝐴 𝐹 𝐵 ) ) |