Step |
Hyp |
Ref |
Expression |
1 |
|
climcncf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climcncf.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climcncf.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |
4 |
|
climcncf.5 |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝐴 ) |
5 |
|
climcncf.6 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐷 ) |
6 |
|
climcncf.7 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
7 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
10 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
14 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
15 |
|
fex |
⊢ ( ( 𝐺 : 𝑍 ⟶ 𝐴 ∧ 𝑍 ∈ V ) → 𝐺 ∈ V ) |
16 |
4 14 15
|
sylancl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
17 |
|
coexg |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐺 ∈ V ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
18 |
3 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
19 |
|
cncfi |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) |
20 |
19
|
3expia |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) ) |
21 |
3 6 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) |
23 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ) |
24 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑍 ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
25 |
4 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
26 |
1 2 6 13 5 18 22 23 25
|
climcn1 |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝ ( 𝐹 ‘ 𝐷 ) ) |