Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
2 |
|
climcnds.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
3 |
|
climcnds.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
4 |
|
climcnds.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
1zzd |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → 1 ∈ ℤ ) |
7 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
8 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
9 |
|
2nn |
⊢ 2 ∈ ℕ |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
11 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
13 |
12
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
16 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
18 |
15 17 12
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
19 |
13 18
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
20 |
4 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
21 |
8 20
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
22 |
5 7 21
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
25 |
24 5
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
28 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
29 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
30 |
27 28 29
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
31 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
32 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( 𝑗 + 1 ) ) → 𝑛 ∈ ℕ ) |
33 |
31 32 21
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑗 + 1 ) ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
34 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝜑 ) |
35 |
|
elfz1eq |
⊢ ( 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑛 = ( 𝑗 + 1 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑛 = ( 𝑗 + 1 ) ) |
37 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
38 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
39 |
37 38
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ0 ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
41 |
36 40
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
42 |
12
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ0 ) |
43 |
42
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 2 ↑ 𝑛 ) ) |
44 |
14
|
breq2d |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 0 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 0 ≤ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
45 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
47 |
44 46 12
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
48 |
13 18 43 47
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
49 |
48 4
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
50 |
34 41 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
51 |
25 30 33 50
|
sermono |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
53 |
|
2re |
⊢ 2 ∈ ℝ |
54 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
55 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
56 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
57 |
5 6 54 55 56
|
isumrecl |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
58 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
59 |
53 57 58
|
sylancr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
60 |
23
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
61 |
5 7 1
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
63 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
64 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
65 |
9 63 64
|
sylancr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
66 |
62 65
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
67 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
68 |
53 66 67
|
sylancr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
69 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
70 |
1 2 3 4
|
climcndslem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
71 |
70
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
72 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
73 |
65 5
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
74 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
75 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
76 |
1
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
77 |
74 75 76
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
78 |
72 73 77
|
fsumser |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
79 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℤ ) |
80 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ) |
81 |
75
|
ssriv |
⊢ ( 1 ... ( 2 ↑ 𝑗 ) ) ⊆ ℕ |
82 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ⊆ ℕ ) |
83 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
84 |
1
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
85 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
86 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
87 |
5 79 80 82 83 84 85 86
|
isumless |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) |
88 |
78 87
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) |
89 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
90 |
|
2rp |
⊢ 2 ∈ ℝ+ |
91 |
90
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℝ+ ) |
92 |
66 89 91
|
lemul2d |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ↔ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) ) |
93 |
88 92
|
mpbid |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
94 |
60 68 69 71 93
|
letrd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
95 |
94
|
ralrimiva |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
96 |
|
brralrspcev |
⊢ ( ( ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ 𝑥 ) |
97 |
59 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ 𝑥 ) |
98 |
5 6 23 52 97
|
climsup |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) ⇝ sup ( ran seq 1 ( + , 𝐺 ) , ℝ , < ) ) |
99 |
|
climrel |
⊢ Rel ⇝ |
100 |
99
|
releldmi |
⊢ ( seq 1 ( + , 𝐺 ) ⇝ sup ( ran seq 1 ( + , 𝐺 ) , ℝ , < ) → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
101 |
98 100
|
syl |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
102 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
103 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
104 |
103
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
105 |
20
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
106 |
102 104 105
|
iserex |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) ) |
107 |
106
|
biimpar |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
108 |
101 107
|
syldan |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
109 |
|
1zzd |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → 1 ∈ ℤ ) |
110 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
111 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ℕ ) |
112 |
31 111 1
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
113 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝜑 ) |
114 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
116 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑘 = ( 𝑗 + 1 ) ) |
117 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 ∈ ℕ ↔ ( 𝑗 + 1 ) ∈ ℕ ) ) |
118 |
117
|
biimparc |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ 𝑘 = ( 𝑗 + 1 ) ) → 𝑘 ∈ ℕ ) |
119 |
115 116 118
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
120 |
113 119 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
121 |
25 30 112 120
|
sermono |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
122 |
121
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
123 |
|
0zd |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → 0 ∈ ℤ ) |
124 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
125 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
126 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
127 |
102 123 124 125 126
|
isumrecl |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
128 |
110
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
129 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
130 |
102 129 20
|
serfre |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
132 |
|
ffvelrn |
⊢ ( ( seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
133 |
131 37 132
|
syl2an |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
134 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
135 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
136 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
137 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
138 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
139 |
138
|
nn0red |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℝ ) |
140 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
141 |
9 138 140
|
sylancr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
142 |
141
|
nnred |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
143 |
|
2z |
⊢ 2 ∈ ℤ |
144 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
145 |
143 144
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
146 |
|
bernneq3 |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 𝑗 + 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
147 |
145 138 146
|
sylancr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
148 |
139 142 147
|
ltled |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
149 |
137
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℤ ) |
150 |
141
|
nnzd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
151 |
|
eluz |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℤ ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
152 |
149 150 151
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
153 |
148 152
|
mpbird |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
154 |
|
eluzp1m1 |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
155 |
137 153 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
156 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
157 |
136 155 156
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
158 |
135 157
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ ℝ ) |
159 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
160 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
161 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) |
162 |
160 161 1
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
163 |
114
|
adantl |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
164 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
165 |
|
eluznn |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
166 |
163 164 165
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
167 |
160 166 2
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
168 |
159 155 162 167
|
sermono |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
169 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
170 |
1 2 3 4
|
climcndslem1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
171 |
160 169 170
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
172 |
128 158 133 168 171
|
letrd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
173 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
174 |
169 102
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
175 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑗 ) → 𝑛 ∈ ℕ0 ) |
176 |
160 175 105
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
177 |
173 174 176
|
fsumser |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ... 𝑗 ) ( 𝐺 ‘ 𝑛 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
178 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℤ ) |
179 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 0 ... 𝑗 ) ∈ Fin ) |
180 |
175
|
ssriv |
⊢ ( 0 ... 𝑗 ) ⊆ ℕ0 |
181 |
180
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 0 ... 𝑗 ) ⊆ ℕ0 ) |
182 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
183 |
20
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
184 |
49
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
185 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
186 |
102 178 179 181 182 183 184 185
|
isumless |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ... 𝑗 ) ( 𝐺 ‘ 𝑛 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
187 |
177 186
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
188 |
128 133 134 172 187
|
letrd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
189 |
188
|
ralrimiva |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
190 |
|
brralrspcev |
⊢ ( ( Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ 𝑥 ) |
191 |
127 189 190
|
syl2anc |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ 𝑥 ) |
192 |
5 109 110 122 191
|
climsup |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ⇝ sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
193 |
99
|
releldmi |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
194 |
192 193
|
syl |
⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
195 |
108 194
|
impbida |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ) |