Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
2 |
|
climcnds.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
3 |
|
climcnds.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
4 |
|
climcnds.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) ) |
6 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 ) |
8 |
7
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ 1 ) ) |
9 |
|
2cn |
⊢ 2 ∈ ℂ |
10 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
11 |
9 10
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
12 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
13 |
11 12
|
eqtri |
⊢ ( 2 ↑ 1 ) = ( 1 + 1 ) |
14 |
8 13
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 1 + 1 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = ( ( 1 + 1 ) − 1 ) ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
16 16
|
pncan3oi |
⊢ ( ( 1 + 1 ) − 1 ) = 1 |
18 |
15 17
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = 1 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 0 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 1 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 + 1 ) = ( 𝑗 + 1 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
25 |
24
|
fvoveq1d |
⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
27 |
25 26
|
breq12d |
⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑗 + 1 ) + 1 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
31 |
30
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
33 |
31 32
|
breq12d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
34 |
33
|
imbi2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
37 |
36
|
fvoveq1d |
⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |
39 |
37 38
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 1 ) ∈ ℝ ) ) |
43 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
44 |
|
1nn |
⊢ 1 ∈ ℕ |
45 |
44
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
46 |
42 43 45
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
47 |
46
|
leidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 𝐹 ‘ 1 ) ) |
48 |
46
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
49 |
48
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
50 |
47 49
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 1 · ( 𝐹 ‘ 1 ) ) ) |
51 |
|
1z |
⊢ 1 ∈ ℤ |
52 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
53 |
51 52
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
54 |
|
0z |
⊢ 0 ∈ ℤ |
55 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 0 ) ) |
56 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 0 ) ) |
57 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
58 |
9 57
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
59 |
56 58
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = 1 ) |
60 |
59
|
fveq2d |
⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ 1 ) ) |
61 |
59 60
|
oveq12d |
⊢ ( 𝑛 = 0 → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
62 |
55 61
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) ) |
63 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
64 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
65 |
64
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
66 |
62 63 65
|
rspcdva |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
67 |
54 66
|
seq1i |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
68 |
50 53 67
|
3brtr4d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) |
69 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) |
70 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝜑 ) |
71 |
|
2nn |
⊢ 2 ∈ ℕ |
72 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
74 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
75 |
71 73 74
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
76 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
77 |
|
eluznn |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
78 |
75 76 77
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
79 |
70 78 1
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
80 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
81 |
80
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
82 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
83 |
81 82 75
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
85 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
86 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝜑 ) |
87 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
88 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
89 |
87 88 77
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
90 |
86 89 1
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
91 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝜑 ) |
92 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
93 |
87 92 77
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
94 |
91 93 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
95 |
85 90 94
|
monoord2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
96 |
95
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
97 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
98 |
97
|
breq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
99 |
98
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
100 |
96 76 99
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
101 |
69 79 84 100
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
102 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ) |
103 |
|
hashcl |
⊢ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
105 |
104
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
106 |
75
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
107 |
106
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
108 |
|
hashcl |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
109 |
69 108
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
110 |
109
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
111 |
|
2z |
⊢ 2 ∈ ℤ |
112 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
113 |
111 73 112
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
114 |
|
2re |
⊢ 2 ∈ ℝ |
115 |
|
1le2 |
⊢ 1 ≤ 2 |
116 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
117 |
116
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
118 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
119 |
117 118
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
120 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
121 |
114 115 119 120
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
122 |
11 121
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
123 |
111
|
eluz1i |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
124 |
113 122 123
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
125 |
|
uz2m1nn |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
126 |
124 125
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
127 |
126 118
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
128 |
|
peano2zm |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) |
129 |
113 128
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) |
130 |
|
peano2nn0 |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) |
131 |
73 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) |
132 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) |
133 |
111 131 132
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) |
134 |
|
peano2zm |
⊢ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) |
135 |
133 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) |
136 |
113
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
137 |
133
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℝ ) |
138 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℝ ) |
139 |
73
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℤ ) |
140 |
|
uzid |
⊢ ( ( 𝑗 + 1 ) ∈ ℤ → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
141 |
|
peano2uz |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
142 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
143 |
114 115 142
|
mp3an12 |
⊢ ( ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
144 |
139 140 141 143
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
145 |
136 137 138 144
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
146 |
|
eluz2 |
⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
147 |
129 135 145 146
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
148 |
|
elfzuzb |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ) |
149 |
127 147 148
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
150 |
|
fzsplit |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
151 |
149 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
152 |
|
npcan |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
153 |
107 16 152
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
154 |
153
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
155 |
154
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
156 |
151 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
157 |
156
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
158 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) |
159 |
9 73 158
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) |
160 |
107
|
times2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
161 |
159 160
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
162 |
161
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) ) |
163 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
164 |
107 107 163
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
165 |
162 164
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
166 |
|
uztrn |
⊢ ( ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
167 |
147 127 166
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
168 |
167 118
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ ) |
169 |
168
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 ) |
170 |
|
hashfz1 |
⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
171 |
169 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
172 |
126
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 ) |
173 |
|
hashfz1 |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) |
174 |
172 173
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) |
175 |
174
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
176 |
165 171 175
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
177 |
106
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
178 |
|
fzdisj |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) |
179 |
177 178
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) |
180 |
|
hashun |
⊢ ( ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
181 |
102 69 179 180
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
182 |
157 176 181
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
183 |
105 107 110 182
|
addcanad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
184 |
183
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
185 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
186 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
187 |
186
|
fveq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
188 |
186 187
|
oveq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
189 |
185 188
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
190 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
191 |
189 190 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
192 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
193 |
|
fsumconst |
⊢ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
194 |
69 192 193
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
195 |
184 191 194
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
196 |
101 195
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
197 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) |
198 |
70 197 1
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
199 |
102 198
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
200 |
69 79
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
201 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
202 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
203 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
204 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
205 |
71 203 204
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
206 |
205
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
207 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
208 |
207
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
209 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
210 |
208 209 205
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
211 |
206 210
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
212 |
4 211
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
213 |
201 202 212
|
serfre |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
214 |
213
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
215 |
136 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
216 |
191 215
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
217 |
|
le2add |
⊢ ( ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ∧ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
218 |
199 200 214 216 217
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
219 |
196 218
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
220 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
221 |
1
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
222 |
70 197 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
223 |
220 127 222
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
224 |
223
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
225 |
224
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ↔ Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
226 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
227 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) |
228 |
70 227 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
229 |
226 167 228
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
230 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) |
231 |
179 156 230 228
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
232 |
229 231
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
233 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
234 |
233 201
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
235 |
|
seqp1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
236 |
234 235
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
237 |
232 236
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ↔ ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
238 |
219 225 237
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
239 |
238
|
expcom |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝜑 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
240 |
239
|
a2d |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
241 |
22 28 34 40 68 240
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
242 |
241
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |