| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climcnds.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 2 |
|
climcnds.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 3 |
|
climcnds.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 4 |
|
climcnds.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 1 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 1 ) ) |
| 7 |
|
2cn |
⊢ 2 ∈ ℂ |
| 8 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
| 10 |
6 9
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 2 ↑ 𝑥 ) = 2 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑥 = 1 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) |
| 13 |
5 12
|
breq12d |
⊢ ( 𝑥 = 1 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑗 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑗 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 19 |
15 18
|
breq12d |
⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 25 |
21 24
|
breq12d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 26 |
25
|
imbi2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) |
| 31 |
27 30
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑘 = 1 → ( 0 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 0 ≤ ( 𝐹 ‘ 1 ) ) ) |
| 35 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 36 |
|
1nn |
⊢ 1 ∈ ℕ |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 38 |
34 35 37
|
rspcdva |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 1 ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 2 ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑘 = 2 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 2 ) ∈ ℝ ) ) |
| 41 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 42 |
|
2nn |
⊢ 2 ∈ ℕ |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 44 |
40 41 43
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ∈ ℝ ) |
| 45 |
33
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 1 ) ∈ ℝ ) ) |
| 46 |
45 41 37
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 47 |
44 46
|
addge02d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐹 ‘ 1 ) ↔ ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 48 |
38 47
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
| 49 |
46 44
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ∈ ℝ ) |
| 50 |
43
|
nnrpd |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 51 |
44 49 50
|
lemul2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ↔ ( 2 · ( 𝐹 ‘ 2 ) ) ≤ ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) ) |
| 52 |
48 51
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( 𝐹 ‘ 2 ) ) ≤ ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 53 |
|
1z |
⊢ 1 ∈ ℤ |
| 54 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 1 ) ) |
| 56 |
55 9
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 2 ↑ 𝑛 ) = 2 ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ 2 ) ) |
| 58 |
56 57
|
oveq12d |
⊢ ( 𝑛 = 1 → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 59 |
54 58
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) ) |
| 60 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 61 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 63 |
59 60 62
|
rspcdva |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 64 |
53 63
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 65 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 66 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 67 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 68 |
53 67
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 69 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 2 ) ) |
| 70 |
65 37 66 68 69
|
seqp1d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 2 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) = ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 72 |
52 64 71
|
3brtr4d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 75 |
74
|
fveq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 76 |
74 75
|
oveq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 77 |
73 76
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 78 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 79 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 81 |
80
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 82 |
77 78 81
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 83 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 85 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) · 2 ) ) |
| 86 |
7 84 85
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) · 2 ) ) |
| 87 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 88 |
42 83 87
|
sylancr |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 90 |
89
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
| 91 |
|
mulcom |
⊢ ( ( ( 2 ↑ 𝑗 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) |
| 92 |
90 7 91
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) |
| 93 |
86 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) |
| 94 |
93
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( 2 · ( 2 ↑ 𝑗 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 95 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℂ ) |
| 96 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 97 |
96
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
| 98 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 99 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 100 |
42 81 99
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 101 |
97 98 100
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 103 |
95 90 102
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 · ( 2 ↑ 𝑗 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 104 |
82 94 103
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 105 |
89
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ0 ) |
| 106 |
|
hashfz1 |
⊢ ( ( 2 ↑ 𝑗 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) = ( 2 ↑ 𝑗 ) ) |
| 107 |
105 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) = ( 2 ↑ 𝑗 ) ) |
| 108 |
107 90
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) ∈ ℂ ) |
| 109 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ) |
| 110 |
|
hashcl |
⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℕ0 ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℕ0 ) |
| 112 |
111
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℂ ) |
| 113 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
| 114 |
113
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 115 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 116 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 117 |
|
2re |
⊢ 2 ∈ ℝ |
| 118 |
|
1le2 |
⊢ 1 ≤ 2 |
| 119 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 120 |
117 118 119
|
mp3an12 |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 121 |
114 115 116 120
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 122 |
89 65
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 123 |
100
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 124 |
|
elfz5 |
⊢ ( ( ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) → ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 125 |
122 123 124
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 126 |
121 125
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 127 |
|
fzsplit |
⊢ ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 128 |
126 127
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 130 |
90
|
times2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 131 |
86 130
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 132 |
100
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ0 ) |
| 133 |
|
hashfz1 |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 134 |
132 133
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 135 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 136 |
131 134 135
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) ) |
| 137 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ) |
| 138 |
89
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℝ ) |
| 139 |
138
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) < ( ( 2 ↑ 𝑗 ) + 1 ) ) |
| 140 |
|
fzdisj |
⊢ ( ( 2 ↑ 𝑗 ) < ( ( 2 ↑ 𝑗 ) + 1 ) → ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) |
| 141 |
139 140
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) |
| 142 |
|
hashun |
⊢ ( ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ∧ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ∧ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) → ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 143 |
137 109 141 142
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 144 |
129 136 143
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 145 |
108 90 112 144
|
addcanad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) = ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 146 |
145
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 147 |
|
fsumconst |
⊢ ( ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ∧ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 148 |
109 102 147
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 149 |
146 148
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 150 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 151 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
| 152 |
|
peano2nn |
⊢ ( ( 2 ↑ 𝑗 ) ∈ ℕ → ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ) |
| 153 |
89 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ) |
| 154 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) |
| 155 |
|
eluznn |
⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 156 |
153 154 155
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 157 |
151 156 1
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 158 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 159 |
158
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 160 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝜑 ) |
| 161 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) |
| 162 |
|
eluznn |
⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 163 |
153 161 162
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 164 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 165 |
|
eluznn |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 166 |
163 164 165
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 167 |
160 166 1
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 168 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝜑 ) |
| 169 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 170 |
163 169 165
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 171 |
168 170 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 172 |
159 167 171
|
monoord2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 173 |
172
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 174 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 175 |
174
|
breq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 176 |
175
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 177 |
173 176
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 178 |
109 150 157 177
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 179 |
149 178
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 180 |
138 101
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 181 |
109 157
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 182 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 183 |
182
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℝ+ ) |
| 184 |
180 181 183
|
lemul2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ↔ ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 185 |
179 184
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 186 |
104 185
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 187 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 188 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 189 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 190 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 191 |
42 189 190
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 192 |
191
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 193 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
| 194 |
193
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
| 195 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 196 |
194 195 191
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 197 |
192 196
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 198 |
4 197
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 199 |
188 198
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 200 |
65 187 199
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 201 |
200
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 202 |
73
|
eleq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) ∈ ℝ ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) |
| 203 |
199
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 205 |
202 204 80
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 206 |
65 187 1
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 207 |
|
ffvelcdm |
⊢ ( ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ∧ ( 2 ↑ 𝑗 ) ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 208 |
206 88 207
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 209 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 210 |
117 208 209
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 211 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 212 |
117 181 211
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 213 |
|
le2add |
⊢ ( ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ∧ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 214 |
201 205 210 212 213
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 215 |
186 214
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 216 |
113 65
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 217 |
|
seqp1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 218 |
216 217
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 219 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ) |
| 220 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 221 |
1
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 222 |
151 220 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 223 |
141 128 219 222
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 224 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 225 |
100 65
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 226 |
224 225 222
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 227 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 228 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 229 |
151 228 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 230 |
227 122 229
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
| 231 |
230
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 232 |
223 226 231
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 233 |
232
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 · ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 234 |
208
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
| 235 |
181
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 236 |
95 234 235
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 237 |
233 236
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 238 |
218 237
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ↔ ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 239 |
215 238
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 240 |
239
|
expcom |
⊢ ( 𝑗 ∈ ℕ → ( 𝜑 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 241 |
240
|
a2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) → ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 242 |
14 20 26 32 72 241
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) |
| 243 |
242
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) |