Step |
Hyp |
Ref |
Expression |
1 |
|
climconst.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climconst.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climconst.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
4 |
|
climconst.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
5 |
|
climconst.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
6 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
7 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
9 |
4
|
subidd |
⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) = 0 ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐴 ) ) = ( abs ‘ 0 ) ) |
11 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐴 ) ) = 0 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) = 0 ) |
14 |
|
rpgt0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 < 𝑥 ) |
16 |
13 15
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
17 |
16
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
18 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) |
19 |
18 1
|
eqtr4di |
⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = 𝑍 ) |
20 |
19
|
raleqdv |
⊢ ( 𝑗 = 𝑀 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) ) |
21 |
20
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
22 |
8 17 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
25 |
1 2 3 5 4 24
|
clim2c |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) ) |
26 |
23 25
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |