Step |
Hyp |
Ref |
Expression |
1 |
|
climconst2.1 |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
2 |
|
climconst2.2 |
⊢ 𝑍 ∈ V |
3 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
5 |
|
snex |
⊢ { 𝐴 } ∈ V |
6 |
2 5
|
xpex |
⊢ ( 𝑍 × { 𝐴 } ) ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ∈ V ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
9 |
1
|
sseli |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ 𝑍 ) |
10 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
12 |
3 4 7 8 11
|
climconst |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |