| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climconst2.1 |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
| 2 |
|
climconst2.2 |
⊢ 𝑍 ∈ V |
| 3 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 5 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 6 |
2 5
|
xpex |
⊢ ( 𝑍 × { 𝐴 } ) ∈ V |
| 7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ∈ V ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 9 |
1
|
sseli |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ 𝑍 ) |
| 10 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
| 11 |
8 9 10
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
| 12 |
3 4 7 8 11
|
climconst |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |