Metamath Proof Explorer


Theorem climconstmpt

Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climconstmpt.m ( 𝜑𝑀 ∈ ℤ )
climconstmpt.z 𝑍 = ( ℤ𝑀 )
climconstmpt.a ( 𝜑𝐴 ∈ ℂ )
Assertion climconstmpt ( 𝜑 → ( 𝑥𝑍𝐴 ) ⇝ 𝐴 )

Proof

Step Hyp Ref Expression
1 climconstmpt.m ( 𝜑𝑀 ∈ ℤ )
2 climconstmpt.z 𝑍 = ( ℤ𝑀 )
3 climconstmpt.a ( 𝜑𝐴 ∈ ℂ )
4 fconstmpt ( 𝑍 × { 𝐴 } ) = ( 𝑥𝑍𝐴 )
5 2 eqcomi ( ℤ𝑀 ) = 𝑍
6 ssid 𝑍𝑍
7 5 6 eqsstri ( ℤ𝑀 ) ⊆ 𝑍
8 2 fvexi 𝑍 ∈ V
9 7 8 climconst2 ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 )
10 3 1 9 syl2anc ( 𝜑 → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 )
11 4 10 eqbrtrrid ( 𝜑 → ( 𝑥𝑍𝐴 ) ⇝ 𝐴 )