Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climconstmpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
climconstmpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
climconstmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
Assertion | climconstmpt | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climconstmpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
2 | climconstmpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | climconstmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
4 | fconstmpt | ⊢ ( 𝑍 × { 𝐴 } ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) | |
5 | 2 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
6 | ssid | ⊢ 𝑍 ⊆ 𝑍 | |
7 | 5 6 | eqsstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
8 | 2 | fvexi | ⊢ 𝑍 ∈ V |
9 | 7 8 | climconst2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |
10 | 3 1 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |
11 | 4 10 | eqbrtrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐴 ) |