Metamath Proof Explorer


Theorem climd

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climd.1 𝑘 𝜑
climd.2 𝑘 𝐹
climd.3 𝑍 = ( ℤ𝑀 )
climd.4 ( 𝜑𝑀 ∈ ℤ )
climd.5 ( 𝜑𝐹𝐴 )
climd.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
climd.7 ( 𝜑𝑋 ∈ ℝ+ )
Assertion climd ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) )

Proof

Step Hyp Ref Expression
1 climd.1 𝑘 𝜑
2 climd.2 𝑘 𝐹
3 climd.3 𝑍 = ( ℤ𝑀 )
4 climd.4 ( 𝜑𝑀 ∈ ℤ )
5 climd.5 ( 𝜑𝐹𝐴 )
6 climd.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
7 climd.7 ( 𝜑𝑋 ∈ ℝ+ )
8 climrel Rel ⇝
9 8 brrelex1i ( 𝐹𝐴𝐹 ∈ V )
10 5 9 syl ( 𝜑𝐹 ∈ V )
11 1 2 3 4 10 6 clim2f2 ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
12 5 11 mpbid ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
13 12 simprd ( 𝜑 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )
14 breq2 ( 𝑥 = 𝑋 → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) )
15 14 anbi2d ( 𝑥 = 𝑋 → ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) ) )
16 15 rexralbidv ( 𝑥 = 𝑋 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) ) )
17 16 rspcva ( ( 𝑋 ∈ ℝ+ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) )
18 7 13 17 syl2anc ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑋 ) )