Metamath Proof Explorer


Theorem climeldmeqmpt

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climeldmeqmpt.k 𝑘 𝜑
climeldmeqmpt.m ( 𝜑𝑀 ∈ ℤ )
climeldmeqmpt.z 𝑍 = ( ℤ𝑀 )
climeldmeqmpt.a ( 𝜑𝐴𝑅 )
climeldmeqmpt.i ( 𝜑𝑍𝐴 )
climeldmeqmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
climeldmeqmpt.t ( 𝜑𝐶𝑆 )
climeldmeqmpt.l ( 𝜑𝑍𝐶 )
climeldmeqmpt.c ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 )
climeldmeqmpt.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
Assertion climeldmeqmpt ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∈ dom ⇝ ↔ ( 𝑘𝐶𝐷 ) ∈ dom ⇝ ) )

Proof

Step Hyp Ref Expression
1 climeldmeqmpt.k 𝑘 𝜑
2 climeldmeqmpt.m ( 𝜑𝑀 ∈ ℤ )
3 climeldmeqmpt.z 𝑍 = ( ℤ𝑀 )
4 climeldmeqmpt.a ( 𝜑𝐴𝑅 )
5 climeldmeqmpt.i ( 𝜑𝑍𝐴 )
6 climeldmeqmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
7 climeldmeqmpt.t ( 𝜑𝐶𝑆 )
8 climeldmeqmpt.l ( 𝜑𝑍𝐶 )
9 climeldmeqmpt.c ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 )
10 climeldmeqmpt.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
11 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐵 ) ∈ V )
12 7 mptexd ( 𝜑 → ( 𝑘𝐶𝐷 ) ∈ V )
13 nfv 𝑘 𝑗𝑍
14 1 13 nfan 𝑘 ( 𝜑𝑗𝑍 )
15 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
16 nfcv 𝑘 𝑗
17 16 nfcsb1 𝑘 𝑗 / 𝑘 𝐷
18 15 17 nfeq 𝑘 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷
19 14 18 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
20 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
21 20 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
22 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
23 csbeq1a ( 𝑘 = 𝑗𝐷 = 𝑗 / 𝑘 𝐷 )
24 22 23 eqeq12d ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) )
25 21 24 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) ) )
26 19 25 10 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
27 5 sselda ( ( 𝜑𝑗𝑍 ) → 𝑗𝐴 )
28 nfv 𝑘 𝑗𝐴
29 1 28 nfan 𝑘 ( 𝜑𝑗𝐴 )
30 nfcv 𝑘 𝑉
31 15 30 nfel 𝑘 𝑗 / 𝑘 𝐵𝑉
32 29 31 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 )
33 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
34 33 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
35 22 eleq1d ( 𝑘 = 𝑗 → ( 𝐵𝑉 𝑗 / 𝑘 𝐵𝑉 ) )
36 34 35 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 ) ) )
37 32 36 6 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 )
38 27 37 syldan ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑉 )
39 16 nfcsb1 𝑘 𝑗 / 𝑘 𝐵
40 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
41 16 39 22 40 fvmptf ( ( 𝑗𝐴 𝑗 / 𝑘 𝐵𝑉 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
42 27 38 41 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
43 8 sselda ( ( 𝜑𝑗𝑍 ) → 𝑗𝐶 )
44 nfv 𝑘 𝑗𝐶
45 1 44 nfan 𝑘 ( 𝜑𝑗𝐶 )
46 nfcv 𝑘 𝑊
47 17 46 nfel 𝑘 𝑗 / 𝑘 𝐷𝑊
48 45 47 nfim 𝑘 ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 )
49 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐶𝑗𝐶 ) )
50 49 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐶 ) ↔ ( 𝜑𝑗𝐶 ) ) )
51 23 eleq1d ( 𝑘 = 𝑗 → ( 𝐷𝑊 𝑗 / 𝑘 𝐷𝑊 ) )
52 50 51 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 ) ↔ ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 ) ) )
53 48 52 9 chvarfv ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 )
54 43 53 syldan ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐷𝑊 )
55 eqid ( 𝑘𝐶𝐷 ) = ( 𝑘𝐶𝐷 )
56 16 17 23 55 fvmptf ( ( 𝑗𝐶 𝑗 / 𝑘 𝐷𝑊 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
57 43 54 56 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
58 26 42 57 3eqtr4d ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) )
59 3 11 12 2 58 climeldmeq ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∈ dom ⇝ ↔ ( 𝑘𝐶𝐷 ) ∈ dom ⇝ ) )