Metamath Proof Explorer


Theorem climeldmeqmpt2

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqmpt2.k 𝑘 𝜑
climeldmeqmpt2.m ( 𝜑𝑀 ∈ ℤ )
climeldmeqmpt2.z 𝑍 = ( ℤ𝑀 )
climeldmeqmpt2.a ( 𝜑𝐴𝑊 )
climeldmeqmpt2.t ( 𝜑𝐵𝑉 )
climeldmeqmpt2.i ( 𝜑𝑍𝐴 )
climeldmeqmpt2.l ( 𝜑𝑍𝐵 )
climeldmeqmpt2.b ( ( 𝜑𝑘𝑍 ) → 𝐶𝑈 )
Assertion climeldmeqmpt2 ( 𝜑 → ( ( 𝑘𝐴𝐶 ) ∈ dom ⇝ ↔ ( 𝑘𝐵𝐶 ) ∈ dom ⇝ ) )

Proof

Step Hyp Ref Expression
1 climeldmeqmpt2.k 𝑘 𝜑
2 climeldmeqmpt2.m ( 𝜑𝑀 ∈ ℤ )
3 climeldmeqmpt2.z 𝑍 = ( ℤ𝑀 )
4 climeldmeqmpt2.a ( 𝜑𝐴𝑊 )
5 climeldmeqmpt2.t ( 𝜑𝐵𝑉 )
6 climeldmeqmpt2.i ( 𝜑𝑍𝐴 )
7 climeldmeqmpt2.l ( 𝜑𝑍𝐵 )
8 climeldmeqmpt2.b ( ( 𝜑𝑘𝑍 ) → 𝐶𝑈 )
9 nfmpt1 𝑘 ( 𝑘𝐴𝐶 )
10 nfmpt1 𝑘 ( 𝑘𝐵𝐶 )
11 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐶 ) ∈ V )
12 5 mptexd ( 𝜑 → ( 𝑘𝐵𝐶 ) ∈ V )
13 6 sselda ( ( 𝜑𝑘𝑍 ) → 𝑘𝐴 )
14 fvmpt4 ( ( 𝑘𝐴𝐶𝑈 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = 𝐶 )
15 13 8 14 syl2anc ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = 𝐶 )
16 7 sselda ( ( 𝜑𝑘𝑍 ) → 𝑘𝐵 )
17 fvmpt4 ( ( 𝑘𝐵𝐶𝑈 ) → ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) = 𝐶 )
18 16 8 17 syl2anc ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) = 𝐶 )
19 15 18 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) )
20 1 9 10 3 11 12 2 19 climeldmeqf ( 𝜑 → ( ( 𝑘𝐴𝐶 ) ∈ dom ⇝ ↔ ( 𝑘𝐵𝐶 ) ∈ dom ⇝ ) )