| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climeldmeqmpt3.k | 
							⊢ Ⅎ 𝑘 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							climeldmeqmpt3.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							climeldmeqmpt3.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							climeldmeqmpt3.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							climeldmeqmpt3.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							climeldmeqmpt3.i | 
							⊢ ( 𝜑  →  𝑍  ⊆  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							climeldmeqmpt3.s | 
							⊢ ( 𝜑  →  𝑍  ⊆  𝐶 )  | 
						
						
							| 8 | 
							
								
							 | 
							climeldmeqmpt3.b | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  𝑈 )  | 
						
						
							| 9 | 
							
								
							 | 
							climeldmeqmpt3.e | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  =  𝐷 )  | 
						
						
							| 10 | 
							
								4
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∈  V )  | 
						
						
							| 11 | 
							
								5
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐶  ↦  𝐷 )  ∈  V )  | 
						
						
							| 12 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑗  ∈  𝑍  | 
						
						
							| 13 | 
							
								1 12
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  | 
						
						
							| 15 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 𝑗  | 
						
						
							| 16 | 
							
								15
							 | 
							nfcsb1 | 
							⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐷  | 
						
						
							| 17 | 
							
								14 16
							 | 
							nfeq | 
							⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷  | 
						
						
							| 18 | 
							
								13 17
							 | 
							nfim | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							anbi2d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑘  =  𝑗  →  𝐷  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqeq12d | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐵  =  𝐷  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  =  𝐷 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 ) ) )  | 
						
						
							| 25 | 
							
								18 24 9
							 | 
							chvarfv | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 )  | 
						
						
							| 26 | 
							
								6
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 𝑈  | 
						
						
							| 28 | 
							
								14 27
							 | 
							nfel | 
							⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈  | 
						
						
							| 29 | 
							
								13 28
							 | 
							nfim | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈 )  | 
						
						
							| 30 | 
							
								21
							 | 
							eleq1d | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  𝑈  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈 ) )  | 
						
						
							| 31 | 
							
								20 30
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  𝑈 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈 ) ) )  | 
						
						
							| 32 | 
							
								29 31 8
							 | 
							chvarfv | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈 )  | 
						
						
							| 33 | 
							
								15
							 | 
							nfcsb1 | 
							⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  ( 𝑘  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 35 | 
							
								15 33 21 34
							 | 
							fvmptf | 
							⊢ ( ( 𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  𝑈 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 36 | 
							
								26 32 35
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 37 | 
							
								7
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝐶 )  | 
						
						
							| 38 | 
							
								25 32
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐷  ∈  𝑈 )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  𝐶  ↦  𝐷 )  =  ( 𝑘  ∈  𝐶  ↦  𝐷 )  | 
						
						
							| 40 | 
							
								15 16 22 39
							 | 
							fvmptf | 
							⊢ ( ( 𝑗  ∈  𝐶  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐷  ∈  𝑈 )  →  ( ( 𝑘  ∈  𝐶  ↦  𝐷 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 )  | 
						
						
							| 41 | 
							
								37 38 40
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝐶  ↦  𝐷 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐷 )  | 
						
						
							| 42 | 
							
								25 36 41
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  𝐶  ↦  𝐷 ) ‘ 𝑗 ) )  | 
						
						
							| 43 | 
							
								3 10 11 2 42
							 | 
							climeldmeq | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∈  dom   ⇝   ↔  ( 𝑘  ∈  𝐶  ↦  𝐷 )  ∈  dom   ⇝  ) )  |