Step |
Hyp |
Ref |
Expression |
1 |
|
climeq.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climeq.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
climeq.3 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
4 |
|
climeq.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climeq.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
6 |
1 4 2 5
|
clim2 |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
8 |
1 4 3 7
|
clim2 |
⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
9 |
6 8
|
bitr4d |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |