| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climeq.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							climeq.2 | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							climeq.3 | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							climeq.5 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							climeq.6 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) )  | 
						
						
							| 6 | 
							
								1 4 2 5
							 | 
							clim2 | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑦 ) ( ( 𝐺 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐺 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) )  | 
						
						
							| 8 | 
							
								1 4 3 7
							 | 
							clim2 | 
							⊢ ( 𝜑  →  ( 𝐺  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑦 ) ( ( 𝐺 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐺 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  𝐺  ⇝  𝐴 ) )  |