| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climeqf.p | 
							⊢ Ⅎ 𝑘 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							climeqf.k | 
							⊢ Ⅎ 𝑘 𝐹  | 
						
						
							| 3 | 
							
								
							 | 
							climeqf.n | 
							⊢ Ⅎ 𝑘 𝐺  | 
						
						
							| 4 | 
							
								
							 | 
							climeqf.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							climeqf.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 6 | 
							
								
							 | 
							climeqf.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								
							 | 
							climeqf.g | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							climeqf.e | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑗  ∈  𝑍  | 
						
						
							| 10 | 
							
								1 9
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 )  | 
						
						
							| 11 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 𝑗  | 
						
						
							| 12 | 
							
								2 11
							 | 
							nffv | 
							⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  | 
						
						
							| 13 | 
							
								3 11
							 | 
							nffv | 
							⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							nfeq | 
							⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							nfim | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑗 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeq12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 )  ↔  ( 𝐹 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 22 | 
							
								15 21 8
							 | 
							chvarfv | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) )  | 
						
						
							| 23 | 
							
								5 6 7 4 22
							 | 
							climeq | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  𝐺  ⇝  𝐴 ) )  |