Metamath Proof Explorer


Theorem climeqf

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqf.p 𝑘 𝜑
climeqf.k 𝑘 𝐹
climeqf.n 𝑘 𝐺
climeqf.m ( 𝜑𝑀 ∈ ℤ )
climeqf.z 𝑍 = ( ℤ𝑀 )
climeqf.f ( 𝜑𝐹𝑉 )
climeqf.g ( 𝜑𝐺𝑊 )
climeqf.e ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
Assertion climeqf ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 climeqf.p 𝑘 𝜑
2 climeqf.k 𝑘 𝐹
3 climeqf.n 𝑘 𝐺
4 climeqf.m ( 𝜑𝑀 ∈ ℤ )
5 climeqf.z 𝑍 = ( ℤ𝑀 )
6 climeqf.f ( 𝜑𝐹𝑉 )
7 climeqf.g ( 𝜑𝐺𝑊 )
8 climeqf.e ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
9 nfv 𝑘 𝑗𝑍
10 1 9 nfan 𝑘 ( 𝜑𝑗𝑍 )
11 nfcv 𝑘 𝑗
12 2 11 nffv 𝑘 ( 𝐹𝑗 )
13 3 11 nffv 𝑘 ( 𝐺𝑗 )
14 12 13 nfeq 𝑘 ( 𝐹𝑗 ) = ( 𝐺𝑗 )
15 10 14 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) )
16 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
17 16 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
18 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
19 fveq2 ( 𝑘 = 𝑗 → ( 𝐺𝑘 ) = ( 𝐺𝑗 ) )
20 18 19 eqeq12d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) = ( 𝐺𝑘 ) ↔ ( 𝐹𝑗 ) = ( 𝐺𝑗 ) ) )
21 17 20 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) ) ) )
22 15 21 8 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) )
23 5 6 7 4 22 climeq ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )