Metamath Proof Explorer


Theorem climeqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqmpt.x 𝑥 𝜑
climeqmpt.a ( 𝜑𝐴𝑉 )
climeqmpt.b ( 𝜑𝐵𝑊 )
climeqmpt.m ( 𝜑𝑀 ∈ ℤ )
climeqmpt.z 𝑍 = ( ℤ𝑀 )
climeqmpt.s ( 𝜑𝑍𝐴 )
climeqmpt.t ( 𝜑𝑍𝐵 )
climeqmpt.c ( ( 𝜑𝑥𝑍 ) → 𝐶𝑈 )
Assertion climeqmpt ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ⇝ 𝐷 ↔ ( 𝑥𝐵𝐶 ) ⇝ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 climeqmpt.x 𝑥 𝜑
2 climeqmpt.a ( 𝜑𝐴𝑉 )
3 climeqmpt.b ( 𝜑𝐵𝑊 )
4 climeqmpt.m ( 𝜑𝑀 ∈ ℤ )
5 climeqmpt.z 𝑍 = ( ℤ𝑀 )
6 climeqmpt.s ( 𝜑𝑍𝐴 )
7 climeqmpt.t ( 𝜑𝑍𝐵 )
8 climeqmpt.c ( ( 𝜑𝑥𝑍 ) → 𝐶𝑈 )
9 nfmpt1 𝑥 ( 𝑥𝐴𝐶 )
10 nfmpt1 𝑥 ( 𝑥𝐵𝐶 )
11 2 mptexd ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ V )
12 3 mptexd ( 𝜑 → ( 𝑥𝐵𝐶 ) ∈ V )
13 6 adantr ( ( 𝜑𝑥𝑍 ) → 𝑍𝐴 )
14 simpr ( ( 𝜑𝑥𝑍 ) → 𝑥𝑍 )
15 13 14 sseldd ( ( 𝜑𝑥𝑍 ) → 𝑥𝐴 )
16 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
17 16 fvmpt2 ( ( 𝑥𝐴𝐶𝑈 ) → ( ( 𝑥𝐴𝐶 ) ‘ 𝑥 ) = 𝐶 )
18 15 8 17 syl2anc ( ( 𝜑𝑥𝑍 ) → ( ( 𝑥𝐴𝐶 ) ‘ 𝑥 ) = 𝐶 )
19 7 adantr ( ( 𝜑𝑥𝑍 ) → 𝑍𝐵 )
20 19 14 sseldd ( ( 𝜑𝑥𝑍 ) → 𝑥𝐵 )
21 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
22 21 fvmpt2 ( ( 𝑥𝐵𝐶𝑈 ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = 𝐶 )
23 20 8 22 syl2anc ( ( 𝜑𝑥𝑍 ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = 𝐶 )
24 23 eqcomd ( ( 𝜑𝑥𝑍 ) → 𝐶 = ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) )
25 18 24 eqtrd ( ( 𝜑𝑥𝑍 ) → ( ( 𝑥𝐴𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) )
26 1 9 10 4 5 11 12 25 climeqf ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ⇝ 𝐷 ↔ ( 𝑥𝐵𝐶 ) ⇝ 𝐷 ) )