| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
| 2 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 3 |
2
|
spcegv |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) ) |
| 4 |
1 3
|
mpcom |
⊢ ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) |
| 5 |
|
climuni |
⊢ ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) |
| 6 |
5
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 ⇝ 𝑥 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 𝐹 ⇝ 𝑦 |
| 9 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑦 ) ) |
| 10 |
7 8 9
|
cbveuw |
⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ∃! 𝑦 𝐹 ⇝ 𝑦 ) |
| 11 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝑥 ) ) |
| 12 |
11
|
eu4 |
⊢ ( ∃! 𝑦 𝐹 ⇝ 𝑦 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
| 13 |
10 12
|
bitri |
⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
| 14 |
4 6 13
|
sylanblrc |
⊢ ( 𝐹 ⇝ 𝐴 → ∃! 𝑥 𝐹 ⇝ 𝑥 ) |