Metamath Proof Explorer


Theorem climeu

Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005)

Ref Expression
Assertion climeu ( 𝐹𝐴 → ∃! 𝑥 𝐹𝑥 )

Proof

Step Hyp Ref Expression
1 climcl ( 𝐹𝐴𝐴 ∈ ℂ )
2 breq2 ( 𝑦 = 𝐴 → ( 𝐹𝑦𝐹𝐴 ) )
3 2 spcegv ( 𝐴 ∈ ℂ → ( 𝐹𝐴 → ∃ 𝑦 𝐹𝑦 ) )
4 1 3 mpcom ( 𝐹𝐴 → ∃ 𝑦 𝐹𝑦 )
5 climuni ( ( 𝐹𝑦𝐹𝑥 ) → 𝑦 = 𝑥 )
6 5 gen2 𝑦𝑥 ( ( 𝐹𝑦𝐹𝑥 ) → 𝑦 = 𝑥 )
7 nfv 𝑦 𝐹𝑥
8 nfv 𝑥 𝐹𝑦
9 breq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥𝐹𝑦 ) )
10 7 8 9 cbveuw ( ∃! 𝑥 𝐹𝑥 ↔ ∃! 𝑦 𝐹𝑦 )
11 breq2 ( 𝑦 = 𝑥 → ( 𝐹𝑦𝐹𝑥 ) )
12 11 eu4 ( ∃! 𝑦 𝐹𝑦 ↔ ( ∃ 𝑦 𝐹𝑦 ∧ ∀ 𝑦𝑥 ( ( 𝐹𝑦𝐹𝑥 ) → 𝑦 = 𝑥 ) ) )
13 10 12 bitri ( ∃! 𝑥 𝐹𝑥 ↔ ( ∃ 𝑦 𝐹𝑦 ∧ ∀ 𝑦𝑥 ( ( 𝐹𝑦𝐹𝑥 ) → 𝑦 = 𝑥 ) ) )
14 4 6 13 sylanblrc ( 𝐹𝐴 → ∃! 𝑥 𝐹𝑥 )