Step |
Hyp |
Ref |
Expression |
1 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
2 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝐴 ) ) |
3 |
2
|
spcegv |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) ) |
4 |
1 3
|
mpcom |
⊢ ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) |
5 |
|
climuni |
⊢ ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) |
6 |
5
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 ⇝ 𝑥 |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝐹 ⇝ 𝑦 |
9 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑦 ) ) |
10 |
7 8 9
|
cbveuw |
⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ∃! 𝑦 𝐹 ⇝ 𝑦 ) |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝑥 ) ) |
12 |
11
|
eu4 |
⊢ ( ∃! 𝑦 𝐹 ⇝ 𝑦 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
13 |
10 12
|
bitri |
⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
14 |
4 6 13
|
sylanblrc |
⊢ ( 𝐹 ⇝ 𝐴 → ∃! 𝑥 𝐹 ⇝ 𝑥 ) |