Step |
Hyp |
Ref |
Expression |
1 |
|
climexp.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climexp.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
climexp.3 |
⊢ Ⅎ 𝑘 𝐻 |
4 |
|
climexp.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
climexp.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
6 |
|
climexp.6 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
7 |
|
climexp.7 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
8 |
|
climexp.8 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
|
climexp.9 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) |
10 |
|
climexp.10 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) |
11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
12 |
11
|
expcn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
13 |
8 12
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
14 |
11
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
15 |
13 14
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
16 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
18 |
4 5 15 6 7 17
|
climcncf |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 ) ) |
19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑥 ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
22 |
17 8
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
23 |
19 21 17 22
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 ) = ( 𝐴 ↑ 𝑁 ) ) |
24 |
18 23
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( 𝐴 ↑ 𝑁 ) ) |
25 |
|
cnex |
⊢ ℂ ∈ V |
26 |
25
|
mptex |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ V |
27 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
28 |
|
fex |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) |
29 |
6 27 28
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
30 |
|
coexg |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ V ∧ 𝐹 ∈ V ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ V ) |
31 |
26 29 30
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ V ) |
32 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑗 ) ) → 𝑥 = ( 𝐹 ‘ 𝑗 ) ) |
34 |
33
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑗 ) ) → ( 𝑥 ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
35 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
36 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑁 ∈ ℕ0 ) |
37 |
35 36
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ∈ ℂ ) |
38 |
32 34 35 37
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
39 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
40 |
6 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
41 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
42 |
1 41
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
43 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
44 |
3 43
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
45 |
2 43
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
46 |
|
nfcv |
⊢ Ⅎ 𝑘 ↑ |
47 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑁 |
48 |
45 46 47
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) |
49 |
44 48
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) |
50 |
42 49
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
51 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
52 |
51
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
55 |
54
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
56 |
53 55
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) |
57 |
52 56
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) ) |
58 |
50 57 10
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
59 |
38 40 58
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
60 |
4 9 31 5 59
|
climeq |
⊢ ( 𝜑 → ( 𝐻 ⇝ ( 𝐴 ↑ 𝑁 ) ↔ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( 𝐴 ↑ 𝑁 ) ) ) |
61 |
24 60
|
mpbird |
⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 ↑ 𝑁 ) ) |