Step |
Hyp |
Ref |
Expression |
1 |
|
climf.nf |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
climf.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
climf.fv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
4 |
|
climrel |
⊢ Rel ⇝ |
5 |
4
|
brrelex2i |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) ) |
7 |
|
elex |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ V ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V ) ) |
10 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
11 |
10
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( 𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ ) ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) |
13 |
1
|
nfeq2 |
⊢ Ⅎ 𝑘 𝑓 = 𝐹 |
14 |
|
nfv |
⊢ Ⅎ 𝑘 𝑦 = 𝐴 |
15 |
13 14
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) |
16 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
18 |
17
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
19 |
|
oveq12 |
⊢ ( ( ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
20 |
16 19
|
sylan |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
22 |
21
|
breq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
23 |
18 22
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
24 |
15 23
|
ralbid |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
26 |
12 25
|
ralbid |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
27 |
11 26
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
28 |
|
df-clim |
⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |
29 |
27 28
|
brabga |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
30 |
29
|
ex |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) ) |
32 |
6 9 31
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
33 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) |
34 |
3
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
35 |
3
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
36 |
35
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
37 |
34 36
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
38 |
33 37
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
39 |
38
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
41 |
40
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
42 |
41
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |
43 |
32 42
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |