Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ⇝ 𝐴 ) |
2 |
|
climrel |
⊢ Rel ⇝ |
3 |
2
|
a1i |
⊢ ( 𝐹 ⇝ 𝐴 → Rel ⇝ ) |
4 |
|
brrelex1 |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ V ) |
5 |
3 1 4
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
6 |
|
brrelex2 |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ 𝐴 ) → 𝐴 ∈ V ) |
7 |
3 1 6
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) |
8 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ dom ⇝ ) |
9 |
5 7 1 8
|
syl3anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ dom ⇝ ) |
10 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
12 |
|
climuni |
⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) → 𝐴 = ( ⇝ ‘ 𝐹 ) ) |
13 |
1 11 12
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘ 𝐹 ) ) |