Step |
Hyp |
Ref |
Expression |
1 |
|
climfveq.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climfveq.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
climfveq.3 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
4 |
|
climfveq.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climfveq.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
6 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
7 |
6
|
biimpi |
⊢ ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
9 |
8 6
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
10 |
1 2 3 4 5
|
climeldmeq |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ) ) |
12 |
9 11
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
13 |
|
climdm |
⊢ ( 𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘ 𝐺 ) ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘ 𝐺 ) ) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊 ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉 ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
18 |
5
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
20 |
1 15 16 17 19
|
climeq |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐺 ⇝ ( ⇝ ‘ 𝐺 ) ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐺 ) ) ) |
21 |
14 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ 𝐺 ) ) |
22 |
|
climuni |
⊢ ( ( 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ∧ 𝐹 ⇝ ( ⇝ ‘ 𝐺 ) ) → ( ⇝ ‘ 𝐹 ) = ( ⇝ ‘ 𝐺 ) ) |
23 |
8 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) = ( ⇝ ‘ 𝐺 ) ) |
24 |
|
ndmfv |
⊢ ( ¬ 𝐹 ∈ dom ⇝ → ( ⇝ ‘ 𝐹 ) = ∅ ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) = ∅ ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ ) |
27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ) ) |
28 |
26 27
|
mtbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ ) |
29 |
|
ndmfv |
⊢ ( ¬ 𝐺 ∈ dom ⇝ → ( ⇝ ‘ 𝐺 ) = ∅ ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐺 ) = ∅ ) |
31 |
25 30
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) = ( ⇝ ‘ 𝐺 ) ) |
32 |
23 31
|
pm2.61dan |
⊢ ( 𝜑 → ( ⇝ ‘ 𝐹 ) = ( ⇝ ‘ 𝐺 ) ) |