Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climfveqmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climfveqmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climfveqmpt.A |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
5 |
|
climfveqmpt.i |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
6 |
|
climfveqmpt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
7 |
|
climfveqmpt.t |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
8 |
|
climfveqmpt.l |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐶 ) |
9 |
|
climfveqmpt.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐷 ∈ 𝑊 ) |
10 |
|
climfveqmpt.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) |
11 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
12 |
7
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ∈ V ) |
13 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
14 |
1 13
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
16 |
15
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
17 |
15
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
18 |
16 17
|
nfeq |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
19 |
14 18
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
20 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
22 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
23 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐷 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
24 |
22 23
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) |
25 |
21 24
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) ) |
26 |
19 25 10
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
29 |
27 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐴 ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
32 |
1 31
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑉 |
34 |
16 33
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 |
35 |
32 34
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 ) |
36 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
38 |
22
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 ) ) |
39 |
37 38
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
40 |
35 39 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 ) |
41 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
42 |
15 16 22 41
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑉 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
43 |
30 40 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
44 |
29 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
45 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑍 ⊆ 𝐶 ) |
46 |
45 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐶 ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → 𝑗 ∈ 𝐶 ) |
48 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐶 |
49 |
1 48
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) |
50 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑊 |
51 |
17 50
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 |
52 |
49 51
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 ) |
53 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐶 ↔ 𝑗 ∈ 𝐶 ) ) |
54 |
53
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) ) ) |
55 |
23
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐷 ∈ 𝑊 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 ) ) |
56 |
54 55
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐷 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 ) ) ) |
57 |
52 56 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 ) |
58 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) |
59 |
15 17 23 58
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐶 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑊 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
60 |
47 57 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
61 |
46 60
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
62 |
26 44 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) ) |
63 |
3 11 12 2 62
|
climfveq |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ) ) |